
HACMan++: Spatially-Grounded Motion Primitives

for Manipulation

Bowen Jiang*1, Yilin Wu*1, Wenxuan Zhou1, Chris Paxton2, David Held1

1CMU, 2AI at Meta

 Grasp Move Delta Poke Open Gripper
Goal

Spatially Grounded
Motion Primitives as

Action Space

Goal

End of Episode

Goal

Goal

End of Episode

 Poke Grasp Poke Open Gripper
 Move to

Poke

Grasp

Move to

Move Delta

Open Gripper

Goal

Critic Map
(Per-point Q Values)

Fig. 1: Our method consists of a library of parameterized, spatially-grounded motion primitives (left), consisting of a primitive type,
primitive location (where the primitive will be grounded), and primitive parameters. These three components form the action space for a
policy that we train with reinforcement learning. Our method learns to select a sequence of primitives (and their corresponding locations
and parameters) to perform a long-horizon manipulation task. In the task shown here, the object is placed in one bin in an initial pose, and
it must be moved into a second bin in a target pose. At the top, we visualize the spatial grounding for the selected primitive; for each point
we visualize the learned Q-value of selecting that point in the form of heatmaps as the grounding location for each primitive.

Abstract—Although end-to-end robot learning has shown some
success for robot manipulation, the learned policies are often not
sufficiently robust to variations in object pose or geometry. To im-
prove the policy generalization, we introduce spatially-grounded
parameterized motion primitives in our method HACMan++.
Specifically, we propose an action representation consisting of
three components: what primitive type (such as grasp or push)
to execute, where the primitive will be grounded (e.g. where the
gripper will make contact with the world), and how the primitive
motion is executed, such as parameters specifying the push
direction or grasp orientation. These three components define a
novel discrete-continuous action space for reinforcement learning.
Our framework enables robot agents to learn to chain diverse
motion primitives together and select appropriate primitive
parameters to complete long-horizon manipulation tasks. By
grounding the primitives on a spatial location in the environment,
our method is able to effectively generalize across object shape
and pose variations. Our approach significantly outperforms
existing methods, particularly in complex scenarios demanding
both high-level sequential reasoning and object generalization.
With zero-shot sim-to-real transfer, our policy succeeds in chal-
lenging real-world manipulation tasks, with generalization to
unseen objects. Videos can be found on the project website:
https://sgmp-rss2024.github.io.

*detonates equal contribution

I. INTRODUCTION

Despite recent progress in training manipulation policies

with reinforcement learning (RL), it remains challenging to

scale RL training to longer-horizon problems with broader

task variations [6, 9, 35, 16]. A significant limitation is

that most robot manipulation policies reason over the space

of granular robot-centric actions, such as gripper or joint

movements [14, 31, 36, 34]. These action spaces are highly

inefficient for longer-horizon tasks due to exploration, credit

assignment, and training stability challenges in deep reinforce-

ment learning [6, 16].

Instead of learning policies over low-level timesteps, the

robot should reason about long-horizon manipulation problems

with general, reusable primitives. For example, to make coffee,

the robot may segment the task into picking up a mug and

then placing it under the coffee machine. This process involves

decomposing the task into a “grasping” stage followed by a

“placing” stage. With a similar idea, prior work has proposed

applying a hierarchical structure in robot decisions, such as

options or skill primitives [3, 15, 29]. These methods decouple

the high-level decisions of “what” to do from the low-level

https://sgmp-rss2024.github.io

decisions of “how” to execute robot motions. However, our

experiments demonstrate that this prior work on using skill

primitives shows limited generalization across different object

geometries and poses.

We desire a model that can both reason over temporal

abstractions (i.e. reasoning about a sequence of parameterized

skill primitives) as well as achieve object pose and shape gen-

eralization. In this work HACMan++, we propose to learn ma-

nipulation policies with RL using a set of spatially grounded

motion primitives. The motion primitives consist only of basic

manipulation motions such as grasping, placing, or pushing.

Each primitive is parameterized by a location selected from the

observed point cloud, which the primitive is defined relative

to, and a vector of additional parameters defining the details of

the gripper motion. For example, “grasping” is parameterized

by a location on the object point cloud to grasp and a gripper

orientation; “placing” selects a location on the background

point cloud and a gripper orientation; “pushing” selects a

contact location and a push direction. We also include two

“move” primitives to allow for more generic robot motions.

To train a reinforcement learning policy with this action

space, we leverage hybrid actor-critic maps [35, 4]. Given a

3D object point cloud, our method trains a critic to output per-

point, per-primitive scores, which form a primitive-conditioned

“Critic Map.” Our method selects the best primitive and the

corresponding location with the highest score in the primitive-

conditioned critic map. Compared to previous work on 3D

hybrid actor-critic maps [35] which is limited to one non-

prehensile poking skill, we include a comprehensive set of

heterogenous primitives to enable the robot to perform a

wider variety of tasks. Another related line of work [4] is

demonstrated on only a single task and four objects, whereas

we demonstrate our approach on six different tasks and a wide

variety of object geometries.

The contributions of our paper include:

1) A set of diverse and generic spatially-grounded motion

primitives that can solve a range of complex tasks that

could not be solved by prior work.

• Compared to prior work that uses diverse motion prim-

itives [3, 29], our primitives are spatially-grounded and

outperform prior work.

• Compared to prior work that uses specially-designed

spatially-grounded primitives for a single task [4, 35],

our primitive set is more generic and applies to a wide

range of tasks.

2) An RL training framework that incorporates the primitive

selection and spatial-grounding selection using the critic.

Our experimental contributions include:

1) We demonstrate that our method learns complex skills

that generalizes over unseen objects, achieving an 89.5%

success rate on training objects and an 84.9% success rate

on unseen object categories on our Double Bin task.

2) We show that our method significantly outperforms

prior work that includes diverse primitives that are not

spatially-grounded on diverse simulation tasks.

3) We also perform real robot experiments for a DoubleBin

object pose alignment task, which achieves 73% success

rate.

In addition to our main experiments, we also show prelim-

inary results of extending the concept of spatially grounded

motion primitives to dexterous hand manipulation tasks in

Appendix B6, demonstrating the potential for this approach

to generalize to other robot morphologies.

II. RELATED WORK

Hierarchical Reinforcement Learning. Prior work has

integrated a hierarchical structure into reinforcement learning

to reduce the challenge of long-horizon reasoning for RL

algorithms [26]. In hierarchical reinforcement learning, a high-

level policy will communicate with one or more low-level

policies to finish the task. However, it can be difficult to

jointly optimize both the high and low-level policies [7].

Alternatively, prior work has proposed to first learn a set of

low-level skills from an offline dataset [17, 2, 21, 20, 24].

Instead, we follow prior work in the robotics domain and

define the low-level policies as commonly used primitives such

as grasping, placing, and pushing [3, 15]. We compare our

method to other methods that use “skill libraries,” including

some hierarchical RL methods, explained below.

Skill Libraries. Prior work [37] has specifically designed

a set of primitives including approach, contact, fit, align, and

insertion, as a skill library. However, this set of primitives

is not generalizable to other tasks. Furthermore, it assumes

a pre-specified order of primitives to be executed to finish

a given task. Another line of work defines the action space

of the RL policy based on a more general set of pre-defined

parametrized primitives such as RAPS [3], MAPLE [15], and

Parameterized DQN [29]. The RL policy learns to automat-

ically chain different primitives together to achieve a task

without assuming a fixed order of primitives. This also means

that the agent can re-execute primitives when a failure occurs.

Our method inherits the benefits of those work in RL policy

with parameterized primitives and also differs from them in

that we spatially ground the primitives to improve spatial

reasoning. We compare our method to these prior methods

in the experiments and demonstrated significantly improved

performance.

Spatial Action Maps. Spatial action maps connect a dense

action representation with visual inputs using segmentation-

style models [33, 19, 22, 12, 30, 28]. Our method pro-

poses a novel combination of motion primitives with spatial

action maps to incorporate both temporal abstraction and

spatial reasoning. Most prior work on spatial action maps has

limitations on requiring expert demonstrations for imitation

learning [33, 19, 22] or is limited to one-step decisions without

sequential reasoning [12, 30, 28]. Our work is the most related

to [35, 4]; however, Zhou et al. [35] is limited to one non-

prehensile skill (pushing) while we use a set of heterogeneous

skills that can be combined to achieve more complex tasks.

Feldman et al. [4] uses 2 skills, grasp and shift, and their

horizon is limited to 2 (shift and then grasp), whereas our

Corresponding
Primitive
Parameter

Segmentation-
style Actor

Network

Segmentation-
style Critic

Network

Target SE(3)
Transformation

Raw Point Cloud

Per-Point
Critic

Features

Per-Point
Actor Features

Actor Map

MLP

......

Per-Point
Per-Primitive
Q-value

Critic Map

Point Cloud Observation

Action Output

Point Location (x, y, z)
Goal Flow (dim=3)
Segmentation (dim=1)

Best Location

Hybrid Actor-Critic Map for Spatially Grounded Motion Primitives

...

Highest value

MLP

Per-Point
Primitive

Parameters

......

Grasp
Move to

kth Primitive

Grasp
Critic

Move
To
Critic

...

......

Fig. 2: Our method processes a point cloud to estimate a set of per-point primitive parameters am
i for each point xi in the point cloud and

for each primitive in our primitive set. We then compute a set of “Critic Maps” (one per primitive) which estimate the Q-value Qi,k of using
each primitive k, grounded at each point xi, and parameterized by the estimated primitive parameters am

i . We either sample from the Critic
Map (during training) or choose the point and primitive with the highest score (during evaluation) for robot execution.

method allows the algorithm to chain the skills together in

different sequences as appropriate for different tasks. Further,

Feldman et al. [4] demonstrates their method on a single task

with four object types, whereas we demonstrate our method

on six different tasks and a wide variety of object shapes.

More detailed discussions between our method and [35, 4]

are included in Appendix E.

III. BACKGROUND

A stochastic sequential decision problem can be formal-

ized as a Markov Decision Process (MDP), characterized by

(S,A, P, r, γ). Here, S denotes the states, A represents the

actions, P (st+1|st, at) is the likelihood of transitioning from

state st to state st+1 given action at, and r(st, at, st+1) is the

reward obtained at time t. The goal within this framework is to

optimize the return Rt, which is the sum of discounted future

rewards, expressed as Rt =
∑

∞

i=0 γ
irt+i. Under a policy π,

the expected return for taking action a in state s is described

by the Q-function Qπ(s, a) = Eπ[Rt|st = s, at = a].

HACMan++ leverages Q-learning-based algorithms for con-

tinuous action spaces [10, 5]. These methods are characterized

by a policy πθ with parameters θ, and a Q-function Qφ with

parameters φ. Training involves collecting a dataset D of state

transitions (st, at, st+1), with the Q-function’s loss formulated

as:

L(φ) = E(st,at,st+1)∼D[(Qφ(st, at)− yt)
2], (1)

with yt being the target value, determined by:

yt = rt + γQφ(st+1, πθ(st+1)). (2)

The optimization of the policy πθ is described by the loss

function:

J(θ) = −Est∼D[Qφ(st, πθ(st))]. (3)

IV. METHOD

Assumptions. We assume that the robot agent records a

point cloud observation of a scene X , which may be obtained

from one or more calibrated depth cameras. We further assume

that this point cloud is segmented into object X obj and

background X b components. See Appendix A for details.

To address the challenges of long-horizon manipulation

tasks, our method uses a set of parameterized motion primi-

tives, and learns how to both 1) chain these primitives together

to achieve a task and 2) select appropriate parameters for

the execution of each primitive. Section IV-A defines the

structure of the proposed action representation. Section IV-B

lists the specific choices of parameterized motion primitives.

Section IV-C describes how we train the policy with the

proposed action space with the RL algorithm.

A. Action Representation

Our action representation comprises three key elements:

the primitive type aprim, the primitive location aloc, and

the primitive parameters am. These components collectively

define the “What”, “Where”, and “How” of each sequential

skill execution.

Primitive Type a
prim determines the type of primitive the

robot will execute, such as poking, grasping, or placing (see

the full list in Section IV-B). The robot policy aims to

learn to perform different tasks by chaining the primitives

in appropriate order based on the observations. Each type of

primitive is uniquely parameterized to allow for variations in

execution, adapting to the specific demands of the task. Once

the parameters are specified, these primitives are executed with

a low-level controller.

Primitive Location a
loc is a selected point of interaction

in the scene, chosen from the observed point cloud X . The

selected point grounds each primitive in the observed world:

the robot action will be applied at a location relative to the

selected point, as defined by the primitive parameters am.

Primitive Parameters a
m detail how the robot will execute

the chosen primitive at the selected location aloc. It includes

aspects like gripper orientation while approaching the object,

an offset with respect to the chosen primitive location, and

post-contact movement. Details are primitive-type-dependent

and are described below.

B. Parameterized Motion Primitives

We use five distinct and generic motion primitives, that

collectively satisfy the needs of a wide range of manipu-

lation tasks, following the primitive designs from previous

work [3, 15]. Each primitive has its own specific parameters

described below. More details of the motion parameters for

each primitive can be found in Appendix A.

Poke: This primitive applies a non-prehensile poking motion

to the target object [35, 32, 4, 1]. The robot moves the fingertip

of the gripper to the selected primitive location aloc on the

object as the initial contact point (see Appendix A for details).

The motion parameters am consists of two parts: 1) the 2D

gripper orientation while approaching the initial contact point,

and 2) parameters that describe the poking motion after the

gripper reaches the initial contact point on the object, defined

as a 3D vector of gripper translation.

Grasp: This primitive grasps the target object and then lifts it

up [13, 25, 4]. The primitive location aloc under the grasp

primitive type defines a grasping point on the object. The

motion parameters am detail the 2D gripper orientation while

approaching the grasping point. Upon reaching the grasping

point, the gripper closes to grasp the object. It then lifts up by

a pre-specified distance (see Appendix A).

Move to: This primitive moves the gripper to a location that is

defined relative to a point aloc selected from the background

point cloud X b. The primitive parameters am contain two

parts: 1) the 2D gripper orientation when approaching the

location, and 2) a 3D vector defining an offset from the

selected location aloc; the target point for the gripper to move

to is given by the selected location aloc plus this offset.

The selected location aloc grounds this motion on the point

cloud, whereas the added offset gives the robot more flexibility

in where to move. To speed up exploration, we restrict the

primitive location aloc to be selected from the background

points and we only execute this primitive when the gripper is

already grasping an object.

Open Gripper: This primitive opens the gripper. The selected

location aloc has no influence on the action, and this primitive

does not require any motion parameters.

Move delta: To account for any nuanced movements that are

difficult to achieve with the above primitives, we include the

“Move delta” primitive to move the gripper by a 3D delta

movement and 2D orientation. Motion parameters for this

primitive specify a delta translation and rotation of the gripper.

We restrict this primitive to only be selected when the robot

is already grasping an object.

C. Hybrid RL Algorithm

HACMan++ integrates a multi-primitive approach with ex-

isting Q-learning-based RL algorithms [5, 8, 10]. Our action

space includes both discrete and continuous components: the

primitive type aprim is selected from K primitives; for each

primitive type, the primitive location aloc is selected from N

points from the observed point cloud; whereas the motion

parameters am are a vector of continuous values.

The overall architecture of our approach is shown in Fig-

ure 2. The agent receives as input a point cloud observation of

size N. We first use a segmentation-style point cloud network

to output per-point actor features fa
i for each point xi. These

features are shared across the K different primitives. We then

input each of these features into a per-primitive MLP to output

motion parameters ami,k for each point xi and each primitive

k. We refer to these outputs as an “Actor Map.”

Our method also extracts per-point critic features fi for each

point xi through a segmentation-style point cloud critic feature

extractor. These features are shared across the K different

primitives. The per-point motion parameters ami,k are then

concatenated with per-point critic features fi and input into a

multi-layer perceptron (MLP) to calculate per-point Q values

Qi,k for each point xi and each primitive k; this Q-value

represents the effectiveness of executing the kth primitive with

the motion parameters ami,k at the primitive location xi. The

above procedure generates a “Critic Map” with a total of KN
Q-values across all points and all primitives (see Figure 2).

The optimal action is chosen by selecting the highest

Q-value Qmax
i,k from the critic map, which corresponds to

primitive type k, primitive location xi, and motion parameters

ami,k. During training, the policy selects primitive types and

locations by sampling from a softmax distribution over Q-

values to balance exploration and exploitation, formalized as:

πdiscrete(k, xi | s) =
exp(Qi,k/β)

∑K

k=1

∑N

i=1 exp(Qi,k/β)
(4)

where β is a temperature parameter modulating the softmax

function, guiding the agent’s exploratory behavior.

The Q-function is updated according to the Bellman equa-

tion (Equation 1) following TD3 [5]. To update the primitive

parameters ami,k, we similarly follow the TD3 algorithm [5]: If

we define the actor πθ
i,k(s) as the function parameterized by θ

that maps from the observation s to the action parameters ami,k
for a given point xi and primitive k, then the loss function for

this actor is given by:

J(θ) = −Qφ(fi, a
m
i,k) = −Qφ(fi, π

θ
i,k(s)), (5)

where Qφ is the critic network and fi is the critic feature of

the point xi.

To assist the network in understanding the relationship

between the observation and the goal, we compute the corre-

spondence between the points in the observation and the points

Real-worldDouble BinManiSkill2
Peg Insertion

ManiSkill2
Stack Cube

ManiSkill2
Lift Cube

Robosuite
Door Opening

Robosuite
Pick-and-Place

Fig. 3: We evaluate our method on multiple object manipulation tasks that require picking, placing, and poking objects. From left to right, we
show the six simulation tasks: ManiSkill2 Lift Cube, ManiSkill2 Stack Cube, ManiSkill2 Peg Insertion, Robosuite Pick-and-Place, Robosuite
Door Opening, and a customized Robosuite DoubleBin environment. We also show our real-world experiment setup which mimics the
DoubleBin simulation environment.

Double BinManiSkill2
Peg Insertion

ManiSkill2
Stack Cube

ManiSkill2
Lift Cube

Tasks

1.00

0.75

0.50

0.25

0.00

RAPS

P-DQN

Ours

S
uc

ce
ss

 R
at

e

1.0
0.97

1.0

0.32

0.17

0.98

0.000.00

0.53

0.89

0.00 0.00

(20 trials)
（70 trials per object)

(20 trials) (20 trials)

1.0

0.00

Robosuite
Door Opening

(20 trials)

Robosuite
Pick-and-Place

(20 trials)

0.32

0.53

0.89

1.0

0.58

0.33

0.77

0.60

Fig. 4: Performance of our method compared to baselines RAPS [3] and P-DQN [29] on six different tasks. For all the ManiSkill tasks and
Robosuite tasks, we report the success rate averaged over 20 trials. For DoubleBin tasks, we report the average success rate over 32 objects,
each tested with 70 trials. These baselines use the same skill primitives as our approach but they are not spatially grounded, e.g. they do
not ground the primitives on a point selected by the policy from the observed point cloud.

in the goal (see Appendix A for details). For every point in

the observation, we append to the input a 3-dimensional vector

indicating the delta to its corresponding goal location, which

we refer to as “goal flow” (see Figure 2).

V. EXPERIMENTAL SETUP

We evaluate our method on three ManiSkill tasks

(Sec. V-A), two Robosuite tasks (Sec. V-B), as well as a

DoubleBin task (Sec. V-C) as illustrated in Figure 3. This

section outlines the setup, objective, and reward function for

each task.

A. ManiSkill Tasks

We evaluate our method with three tasks from Man-

iSkill [14] (Figure 3, Left). For these tasks, we train the hybrid

actor-critic map with the default reward functions defined in

the ManiSkill benchmark [14].

Lift Cube: The agent is tasked with picking up a cube and

lifting it to a specified height threshold. The initial cube

position and orientation are randomized.

Stack Cube: This task involves stacking a red cube on top

of a green cube, requiring precision in alignment. The initial

position and orientation of both cubes are randomized.

Peg Insertion: This task involves inserting a peg horizontally

into a hole in a box. As the original ManiSkill paper [14]

reports a 0 success rate on this task, we slightly simplify this

task by removing the variations in both the hole’s location

and the peg’s initial pose as well as marginally increasing the

clearance of the hole. We compare to baseline approaches with

these same environment modifications.

B. Robosuite Task

We also evaluate our method with two tasks from Robo-

suite [36](Figure 3, Left). For these tasks, we train with the de-

fault dense reward functions in the Robosuite benchmark [36].

Pick-and-Place: The task is initialized with one object at a

random position in a large single bin and the goal is to place

the object into a specified small container on the side. There

are four containers in total and four objects, including cube,

box, can and milk carton.

Door Opening: A door with a handle is placed in front of

a single robot arm in this task. The agent needs to learn to

rotate the door handle and open the door.

C. DoubleBin Task

To further demonstrate the benefits of spatial grounding,

we design the DoubleBin task (Figure 3, Right). It is built

on top of Robosuite [36] with the Mujoco simulator [27].

Compared to the ManiSkill tasks, it requires longer horizon

reasoning and has more object shape variations. Each episode

Goal

Poke Grasp Move to Move d. (Move delta) Open g. (Open gripper)

Poke

Grasp

Move to

Move d.

Open g.

 Grasp Move delta

 Poke Poke Open Gripper

Poke
Grasp

Move to

Move d.

Open g.

Poke

Grasp

Move to

Move d.

Open g.

Poke

Grasp

Move to

Move d.

Open g.

Poke

Grasp

Move to

Move d.

Open g.

Max Primitive Score

Poke

Grasp

Move to

Move d.

Open g.

Poke

Grasp

Move to

Move d.

Open g.

 Poke

End of Episode

Fig. 5: A simulation rollout of our policy. The goal is shown in the top right, and also overlayed on each observation. At each step, we
visualize the scores that we assign to each of the primitives. We also visualize the selected primitive location and parameters (orange arrow).
As shown, our method learns to chain a sequence of grounded primitives to accomplish a challenging long-horizon manipulation task.

TABLE I: Differences Between Our Method and Baselines.

Spatially Grounded Primitive Selection

Ours ✓ Argmax of Critic Scores
P-DQN [29] × Argmax of Critic Scores
RAPS [3] × Argmax of Actor Probabilities

starts with two bins with one object in a randomly selected

bin. The objective of the robot agent is to perform a sequence

of motions to manipulate the object to a pre-specified 6D goal

pose in the opposite bin. This resembles a common scenario

in warehouse automation and assembly lines. The reward

function is the average norm of the point cloud correspondence

vectors between the object’s current state and goal state state

(see Appendix B).

At each episode, we sample one object from a set of 32

objects with diverse geometries for training. The agent needs

to dynamically adapt its manipulation strategies to suit the

unique geometry of each object. We evaluate our method on 7

unseen object instances (from training object categories) and

5 objects from unseen object categories.

VI. SIMULATION RESULTS

In our simulation experiments, we aim to answer the fol-

lowing questions:

• Do spatially grounded primitives enable better perfor-

mance in high precision tasks than previous methods?

• Does our method reasonably select appropriate primitives

at each step from a set of primitives and strategically

compose them together to solve long-horizon tasks?

• Does the learned policy generalize to unseen objects?

The comparison between our method and baselines over six

tasks is reported in Figure 4. The details of the training and

evaluation procedures can be found in Appendix B.

Effect of Spatial Grounding. To demonstrate the benefits of

spatial grounding, we compare our method to two baselines,

P-DQN and RAPS [3, 29]. Both of the baselines use param-

eterized primitives as the action space of their RL policies,

but the primitives are not spatially-grounded. For primitives

that involve location parameters, both of the baselines directly

regress the location parameters, instead of selecting a location

from the observed point cloud as in our method. P-DQN

selects primitives based on the critic scores of each primitive

type (rather than the critic scores of each primitive type

and location in our method), while RAPS directly outputs

both action probabilities and the primitive parameters from

the actor. Table I highlights the differences between our

method and these baselines. A more detailed description of the

implementation of the baselines can be found in Appendix A.

The results are shown in Fig. 4. Although these baselines

perform well on the easiest task (Lift Cube), they struggle

with the other tasks which require more precise spatial rea-

soning (Stack Cube and Peg Insertion) and/or generalization

to object shape variations (DoubleBin). For Robosuite tasks,

Pick-and-Place 1) does not require precise placing since the

goal can be at any position inside the container 2) and does

not require generalization to object shapes because there are

limited geometries (4 objects compared to 32 objects in the

Double Bin task). The Door Opening task, on the contrary,

requires more geometric reasoning so our method outperforms

the baselines by a large threshold. In general, ours is the

only method that maintains reasonable performance across the

six different tasks. Note that the manipulation tasks in our

experiments require higher precision than the tasks reported

in RAPS [3]. These results demonstrate the benefits of spatial

grounding for precise manipulation tasks.

Effect of Primitive Chaining The proposed method is able

to chain primitives together in appropriate orders to solve

different tasks, without requiring a pre-specified sequence of

primitive types [23]. For example, in the DoubleBin task, our

method learns to chain both the prehensile and non-prehensile

TABLE II: Generalization to Unseen Objects. HACMan++ shows strong generalization to previously-unseen instances of classes in the
training data, and even generalizes well to unseen object categories.

Object Set Split Success Rate (10 steps) Success Rate (20 steps) Success Rate (30 steps) # of Objects

Train 0.676 ± .010 0.845 ± .010 0.892 ± .010 32
Train (Common Categories) 0.746 ± .020 0.903 ± .016 0.937 ± .011 13
Unseen Instance (Common Categories) 0.737 ± .020 0.903 ± .023 0.952 ± .023 7
Unseen Category 0.601 ± .003 0.784 ± .027 0.849 ± .003 5

Train
(Common Categories)

Max Episode Length

1.00

0.75

0.50

0.25

0.00

S
uc

ce
ss

 R
at

e

1.0

Train
Unseen Class

Unseen Instance
(Common Categories)

0 5 10 15 20 25 30

Train Episode Length

Fig. 6: Success rate as a function of the episode length, for training
objects (all), training objects from categories with many instances
(common categories), unseen instances from those same common
categories, and for unseen object classes. We train with an episode
length of 10 but evaluate with varying episode lengths up to 30.

primitives together with different orders under different sit-

uations. If the initial pose of the object is impossible for

top-down grasping, our policy will first poke the object to

a graspable pose as shown in the first step in Figure 5. After

grasping, it also learns to use a move primitive (e.g. Move

to or Move delta) to relocate the object to the other bin (e.g.

step 3 in Figure 5 and select Open Gripper to release it. In

some cases, the policy may perform a few Poke primitives

again to move the object into the correct pose if necessary

(e.g., step 5-6 in Figure 5). This process of moving the objects

across bins and into the correct poses is not possible without

chaining the primitives strategically. Similarly, our method

also demonstrates such strategic reasoning in ManiSkill Tasks,

e.g., chaining grasp with multiple move primitives to complete

the Peg Insertion Task.

Generalization to Unseen Objects. To demonstrate the gener-

alization capabilities of the proposed method, we evaluate our

model on the DoubleBin task with unseen objects, the results

of which are summarized in Table II and Figure 6. We report

the performance averaged over 70 × n trials, where n refers

to the number of objects in the evaluation set. The overall

success rate for achieving the target 6D goal transformation

on the training objects is 89.2% when the policy is evaluated

with an episode length of 30. We evaluate the generalization

capabilities of the model in three settings. First, we evaluate

our method on unseen object instances. These evaluation

objects are within the training object categories, but the exact

object models are unseen. The unseen instances are randomly

selected from the most common categories of objects from

the full object dataset (for which there are many object

instances), including plant container, salt shaker, pencil case,

pill bottle, bottle, canister, and can. The performance of the

model on these common object categories is 93.7% for seen

object instances. An evaluation on unseen instances from these

same categories has nearly the same performance (95.2%),

demonstrating our model’s ability to adapt to different object

geometries within these categories. We also evaluate our

method on objects in unseen categories that were not included

in training (e.g., lunch bag) and achieve a success rate of

84.9%, demonstrating the ability of our model to generalize

to novel shapes. A visualization of the training and unseen

testing objects can be found in Appendix B.

Furthermore, we conducted additional experiments with

varying maximum episode length for evaluation; the results

in Figure 6 show that the success rate increases with a longer

episode length. An episode length of 10 is used for training,

so this figure also demonstrates the ability of our model to

continue to improve performance beyond the training episode

length. By changing from 10 steps to 30 steps, the performance

is enhanced by at least 20% for any object set. For objects in

unseen category, the success rate can increase to 85% when

the maximum episode length increases to 30.

Additional Experiments & Analysis. We also include some

preliminary results of potential extension of our method to

dexterous hand tasks in Appendix B6. See Appendix B for

additional experiments and analysis.

VII. REAL-WORLD EXPERIMENTS

We perform evaluations on the real world DoubleBin task

with the policy trained in simulation as discussed in the

previous sections. At the beginning of each episode, we place

the object at a random pose in a randomly chosen bin. We also

specify a goal SE(3) transformation, which can be either in the

same bin as the initial object pose or in the opposite side bin.

Among all the objects we are testing, Rubik’s Cube, Bowl,

Cup, Tennis are evaluated with the translation goals because

of their rotation-symmetric shape. At each step, we perform

point cloud registration to compute the correspondence from

the current observation to the goal (see details in Appendix D).

Similar to our simulation environment, an episode is deemed

a success when the mean distance between each observation

point on the object and its corresponding goal point is less

 Grasp Move delta Poke Open Gripper Goal

Goal

End of Episode

Episode Start

 Grasp Move delta Poke Open Gripper
Goal

Goal

End of Episode

Episode Start

...

Fig. 7: Two examples of real-world rollout of our policy. Our method learns to chain a sequence of actions to lift the object, move it across
to the other bin, release the object, and then poke it to match the target pose more precisely. The first row shows the rollout of the car (toy)
with a SE(3) goal. The second row shows rollout of the cup with a translation goal.

Fig. 8: Real-world Objects. From left to right, the six objects are:
Car (Toy), Cardboard, Tennis, Cup, Rubik’s Cube and Bowl.

than 3 cm. We set a maximum episode length of 15 time

steps (each time step corresponds to one primitive action).

In our experiments, we select six objects with different

materials and geometries, as shown in Figure 8. Figure 3

shows the real-world experiment setup. Figure 7 demonstrates

an example real-world trajectory rollout. Table III shows the

quantitative evaluation results. Our method is able to achieve

an overall 73% success rate.

VIII. CONCLUSION

In this work, we present spatially grounded motion prim-

itives for robot manipulation tasks, leveraging hybrid actor-

critic maps with reinforcement learning. Our agent learns to

chain different spatially-grounded primitives with appropri-

ately selected primitive parameters to complete a task. Our

TABLE III: Real-World Experiment Results

Object Same Side Goal Opposite Side Goal Subtotal

Rubik’s Cube 14/20 12/20 26/40
Bowl 19/20 16/20 35/40
Cup 11/20 14/20 25/40
Tennis 19/20 19/20 38/40
Cardboard 11/20 15/20 26/40
Car (Toy) 12/20 14/20 26/40

Subtotal 86/120 90/120 176/240
Percentage 72% 75% 73%

method adapts to diverse manipulation tasks and generalizes

to diverse objects, succeeding in tasks that require both high-

level sequential reasoning and low-level motion precision -

where previous methods have fallen short. The effectiveness

of our approach suggests the importance of primitives that are

spatially grounded on points in the environment.

Limitations. Our approach to breaking down a manip-

ulation task into motion primitives has shown adaptability

across a range of scenarios; nonetheless, there are complexities

in designing general primitives to accommodate every task.

Although we have added some preliminary experiments ex-

ploring other gripper morphology (i.e. the dexterous Shadow

hand task in Appendix B6), more exploration is needed to

determine the best way to apply spatially-grounded primitives

to different gripper designs.

ACKNOWLEDGMENTS

We would like to thank Chialiang Kuo for his help to run ex-

periments on Adroit environment. We also thank Zhanyi Sun,

Ben Eisner for the insightful feedback throughout this project.

This work is supported by National Institute of Standards and

Technology under Grant No. 70NANB23H178. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily

reflect the views of the NIST.

REFERENCES

[1] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra

Malik, and Sergey Levine. Learning to poke by poking:

Experiential learning of intuitive physics. Advances in

neural information processing systems, 29, 2016.

[2] Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey

Levine, and Ofir Nachum. Opal: Offline primitive dis-

covery for accelerating offline reinforcement learning.

In Proceedings of (ICLR) International Conference on

Learning Representations, May 2021.

[3] Murtaza Dalal, Deepak Pathak, and Russ R Salakhut-

dinov. Accelerating robotic reinforcement learning via

parameterized action primitives. Advances in Neural

Information Processing Systems, 34:21847–21859, 2021.

[4] Zohar Feldman, Hanna Ziesche, Ngo Anh Vien, and

Dotan Di Castro. A hybrid approach for learning to

shift and grasp with elaborate motion primitives. In 2022

International Conference on Robotics and Automation

(ICRA), pages 6365–6371.

[5] Scott Fujimoto, Herke Hoof, and David Meger. Address-

ing function approximation error in actor-critic methods.

In International conference on machine learning, pages

1587–1596. PMLR, 2018.

[6] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey

Levine, and Karol Hausman. Relay policy learning: Solv-

ing long horizon tasks via imitation and reinforcement

learning. Conference on Robot Learning (CoRL), 2019.

[7] Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel,

and Sergey Levine. Latent space policies for hierarchical

reinforcement learning. In International Conference on

Machine Learning, pages 1851–1860. PMLR, 2018.

[8] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and

Sergey Levine. Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic

actor. In International conference on machine learning,

pages 1861–1870. PMLR, 2018.

[9] Youngwoon Lee, Edward S Hu, and Joseph J Lim.

Ikea furniture assembly environment for long-horizon

complex manipulation tasks. In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages

6343–6349.

[10] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,

Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and

Daan Wierstra. Continuous control with deep reinforce-

ment learning. In Proceedings of (ICLR) International

Conference on Learning Representations, May 2016.

[11] Weiyu Liu, Yilun Du, Tucker Hermans, Sonia Chernova,

and Chris Paxton. Structdiffusion: Language-guided cre-

ation of physically-valid structures using unseen objects.

In Proceedings of Robotics: Science and Systems (RSS),

2023.

[12] Kaichun Mo, Leonidas J. Guibas, Mustafa Mukadam,

Abhinav Gupta, and Shubham Tulsiani. Where2act:

From pixels to actions for articulated 3d objects. In

Proceedings of the IEEE/CVF International Conference

on Computer Vision (ICCV), pages 6813–6823, October

2021.

[13] Arsalan Mousavian, Clemens Eppner, and Dieter Fox.

6-dof graspnet: Variational grasp generation for object

manipulation. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 2901–

2910, 2019.

[14] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Cathera

Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia,

and Hao Su. Maniskill: Generalizable manipulation skill

benchmark with large-scale demonstrations. In Thirty-

fifth Conference on Neural Information Processing Sys-

tems Datasets and Benchmarks Track (Round 2), 2021.

[15] Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Aug-

menting reinforcement learning with behavior primitives

for diverse manipulation tasks. In 2022 International

Conference on Robotics and Automation (ICRA), pages

7477–7484.

[16] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan,

and Chai Quek. Hierarchical reinforcement learning:

A comprehensive survey. ACM Computing Surveys

(CSUR), 54(5):1–35, 2021.

[17] Karl Pertsch, Youngwoon Lee, and Joseph Lim. Acceler-

ating reinforcement learning with learned skill priors. In

Conference on Robot Learning (CoRL), pages 188–204.

PMLR, 2021.

[18] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,

Giulia Vezzani, John Schulman, Emanuel Todorov, and

Sergey Levine. Learning complex dexterous manipula-

tion with deep reinforcement learning and demonstra-

tions. arXiv preprint arXiv:1709.10087, 2017.

[19] Daniel Seita, Yufei Wang, Sarthak Shetty, Edward Li, Za-

ckory Erickson, and David Held. ToolFlowNet: Robotic

Manipulation with Tools via Predicting Tool Flow from

Point Clouds. In Conference on Robot Learning (CoRL),

pages 1038–1049. PMLR, 2022.

[20] Tanmay Shankar and Abhinav Gupta. Learning robot

skills with temporal variational inference. In Proceedings

of (ICML) International Conference on Machine Learn-

ing, pages 8624 – 8633, July 2020.

[21] Tanmay Shankar, Shubham Tulsiani, Lerrel Pinto, and

Abhinav Gupta. Discovering motor programs by re-

composing demonstrations. In Proceedings of (ICLR)

International Conference on Learning Representations,

April 2020.

[22] Mohit Shridhar, Lucas Manuelli, and Dieter Fox.

Perceiver-actor: A multi-task transformer for robotic ma-

nipulation. In Conference on Robot Learning (CoRL),

pages 785–799. PMLR, 2022.

[23] Anthony Simeonov, Yilun Du, Beomjoon Kim, Francois

Hogan, Joshua Tenenbaum, Pulkit Agrawal, and Alberto

Rodriguez. A long horizon planning framework for

manipulating rigid pointcloud objects. In Conference on

Robot Learning, pages 1582–1601. PMLR, 2021.

[24] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu,

Nicholas Rhinehart, and Sergey Levine. Parrot: Data-

driven behavioral priors for reinforcement learning. In

Proceedings of (ICLR) International Conference on

Learning Representations, April 2020.

[25] Martin Sundermeyer, Arsalan Mousavian, Rudolph

Triebel, and Dieter Fox. Contact-graspnet: Efficient 6-

dof grasp generation in cluttered scenes. In 2021 IEEE

International Conference on Robotics and Automation

(ICRA), pages 13438–13444.

[26] Richard S Sutton, Doina Precup, and Satinder Singh.

Between mdps and semi-mdps: A framework for tem-

poral abstraction in reinforcement learning. Artificial

intelligence, 112(1-2):181–211, 1999.

[27] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:

A physics engine for model-based control. In 2012

IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 5026–5033.

[28] Jimmy Wu, Xingyuan Sun, Andy Zeng, Shuran

Song, Johnny Lee, Szymon Rusinkiewicz, and Thomas

Funkhouser. Spatial action maps for mobile manipula-

tion. In Proceedings of Robotics: Science and Systems

(RSS), 2020.

[29] Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun,

Lei Han, Yang Zheng, Haobo Fu, Tong Zhang, Ji Liu,

and Han Liu. Parametrized deep q-networks learning:

Reinforcement learning with discrete-continuous hybrid

action space. arXiv preprint arXiv:1810.06394, 2018.

[30] Zhenjia Xu, He Zhanpeng, and Shuran Song. Umpnet:

Universal manipulation policy network for articulated

objects. IEEE Robotics and Automation Letters, 2022.

[31] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,

Avnish Narayan, Hayden Shively, Adithya Bellathur,

Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-

world: A benchmark and evaluation for multi-task and

meta reinforcement learning. In Conference on Robot

Learning (CoRL), pages 1094–1100. PMLR, 2020.

[32] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee,

Alberto Rodriguez, and Thomas Funkhouser. Learn-

ing synergies between pushing and grasping with self-

supervised deep reinforcement learning. In 2018

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 4238–4245.

[33] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan

Welker, Jonathan Chien, Maria Attarian, Travis Arm-

strong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and

Johnny Lee. Transporter networks: Rearranging the

visual world for robotic manipulation. In Conference on

Robot Learning (CoRL), pages 726–747. PMLR, 2020.

[34] Wenxuan Zhou and David Held. Learning to grasp

the ungraspable with emergent extrinsic dexterity. In

Conference on Robot Learning (CoRL), pages 150–160.

PMLR, 2022.

[35] Wenxuan Zhou, Bowen Jiang, Fan Yang, Chris Paxton,

and David Held. Hacman: Learning hybrid actor-critic

maps for 6d non-prehensile manipulation. In Conference

on Robot Learning, pages 241–265. PMLR, 2023.

[36] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto

Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiriany, and

Yifeng Zhu. robosuite: A modular simulation framework

and benchmark for robot learning. In arXiv preprint

arXiv:2009.12293, 2020.

[37] Lars Johannsmeier, Malkin Gerchow, and Sami Had-

dadin. A framework for robot manipulation: Skill for-

malism, meta learning and adaptive control. In 2019

International Conference on Robotics and Automation

(ICRA), pages 5844–5850.

APPENDIX

A. Algorithm and Implementation Details

1) Observations:

The robot agent first perceives a point cloud X ∈ RM×3

for the entire scene by stacking multiple cameras’ views

together, where M is the number of points in the raw point

cloud observations. Our method assumes that we pre-process

the scene by segmenting the object point cloud X obj from

the background point cloud X b; details of the segmentation

process are listed in Appendix B1 and Appendix D1. After

segmentation, we downsample X obj and X b with voxel sizes

of 1cm and 2cm respectively. We then randomly sample 400
and 1000 points from X obj and X b respectively.

To make our policy also goal-conditioned, we append the

goal information into the observation as “goal flow” in which

we compute the per-point correspondence from the current

object point cloud to the goal object point cloud. Specifically,

for each point xi in the object point cloud, the goal flow is

∆xi = xg
i −xi, where xg

i is a corresponding point of xi in the

goal point cloud. In the simulation, we use the ground-truth

point correspondence given the object pose and the goal pose.

In the real world, we use point cloud registration to align the

observation to the goal (see Appendix D2).

Therefore, the entire observation space (op, og, om) of our

robot agent includes three parts: the point cloud op represent-

ing the 3D position (x, y, z) of the points (3-dimensions per

point), the goal flow og indicating the flow from the current

object point cloud to the point cloud of the object in the goal

pose (3-dimensions per point), and the segmentation mask om
(1-dimension per point).

2) Primitive Implementation Details:

We have five generic motion primitives that can be used

strategically and collectively to solve long-horizon manip-

ulation tasks. The details of the actual execution of those

primitives are listed below.

Poke: The Poke primitive is parameterized by a location

parameter aloc ∈ X obj and a motion parameter am =
(xm, ym, zm, θx, θy) ∈ (−1, 1)5, described below. The gripper

first estimates the surface normal anorm of the object at aloc

and then goes to the pre-contact location alocpre = aloc+anorm×
d1, for a hyperparameter d1 = 0.04 . After reaching the

pre-contact location, the gripper moves to the actual contact

location aloc with a rotation θ = arctan(θx
θy
) along the z axis.

In the last step, the robot moves a delta position (xm, ym, zm)
from the contact location. After the poking motion, the gripper

returns to the reset pose before it captures the next step

observation.

Grasp: The Grasp primitive is parameterized by a location

parameter aloc ∈ X obj and a motion parameter am =
(θx, θy) ∈ (−1, 1)2. The robot opens the gripper and goes

to a pre-contact location alocpre = xloc + (0, 0, d2) above

the actual location (d2 = 0.1m) with a gripper orientation

θ = arctan(θx
θy
) around the z axis. Then the gripper goes

down to the actual contact location and closes the gripper.

After grasping, the gripper moves upward in the z axis by

d3 = 0.15m.

Move to: The Move to primitive is parameterized by

a location parameter aloc ∈ X b and a motion parameter

am = (xm, ym, zm, θx, θy) ∈ (−1, 1)5. The policy chooses a

background point aloc at which to place the object. Since the

gripper is grasping the object, there is an offset between the

gripper position and the placed point. Therefore, the actual

location the gripper moves to is aloc + d4 · (xm, ym, zm),
where (xm, ym, zm) is a learned offset and d4 is the maximum

dimension of the object. During the movement, the gripper

also rotates to the orientation θ = arctan(θx
θy
) in the z axis.

Move delta: The Move delta primitive is parameterized by

a location parameter aloc ∈ X b and a motion parameter am =
(xm, ym, zm, θx, θy) ∈ (−1, 1)5. The gripper moves a delta

position (xm, ym, zm) with a gripper rotation θ = arctan(θx
θy
)

about the z axis.

Open gripper: The Open gripper primitive has no param-

eters and the selected location aloc also doesn’t influence the

action. It is an atomic robot action which opens the gripper to

the full extent.

3) Baseline Implementation:

This section provides details of the baselines’ key imple-

mentation features. Table I summarizes the main differences

between our method and the baseline approaches.

P-DQN [29]. P-DQN uses parameterized primitives, similar

to our method, but it lacks spatial grounding in its primitive

location selection. In our implementation of this baseline,

we processes the point cloud input to derive a global critic

feature fk and a global actor feature fa
k for each primitive

k using a classification-style network. P-DQN predicts K
vectors of primitive parameters and K scores, corresponding

to the K primitives. In contrast to our method, for each vector

of primitive parameters, P-DQN predicts additionally three

dimensions as the regressed location, which are mapped to

the predicted Area of Interests (as explained in Section A5).

P-DQN then selects the primitive with the highest score

during inference or samples from the softmaxed scores during

exploration.

RAPS [3]. Instead of handling different primitives with sep-

arate networks, RAPS extracts a single global actor feature fa

and a single global critic feature f from the input point cloud

using a classification-style network. It predicts an action which

includes the primitive parameters for all K primitives as well

as the log-probabilities of executing each primitive.Similar

to P-DQN [29], RAPS regresses to three dimensions for the

primitive location for each primitive, which are mapped to

the Area of Interest (as explained in Sec A5). RAPS selects

the primitive with the highest log-probability in execution and

samples from the predicted log-probability during exploration.

Note that while our comparison uses TD3 [5] for the baseline

to maintain similarity with our method, the original RAPS

study experimented with various RL algorithms [3]

4) Hyper-parameters:

Leftview Camera Rightview Camera

Frontview Camera

Fig. 9: Simulation DoubleBin Setup. The visualization of the
simulation environment and the positions of the cameras.

Table IV lists the training hyper-parameters used in training.

Hyperparameter Ours P-DQN RAPS

Target Update Interval 4 1 1
Actor Update Interval 4 1 1
Learning Rate 1e-4 1e-4 1e-4
Batch Size 64 64 64
Epsilon Greedy 0.1 - -
Action Noise 0 0.1 0.1
Exploration Temperature 0.1 0.1 -
Tau 0.005 0.005 0.005

TABLE IV: Training Hyper-parameters.

5) Regressed Location Mapping:

By spatially-grounding the primitive locations on the input

point cloud, our method naturally has an object-centric action

space. This allows the more frequent interactions with the

objects during exploration. To make it a fair comparison

between our method and the baselines, we map the regressed

primitive locations predicted by the baseline methods to the

Area of Interest (AoI) of each primitive. Specifically, for a raw

primitive location prediction aloc = (xm, ym, zm) ∈ (−1, 1)3,

we scale and translate it to the

1) the bounding box of the target object for object-centric

primitives such as Poke, Grasp.

2) the entire workspace for background-centric primitives

such as Move to.

This change significantly improves the baseline performance,

although our experiments show that these baselines still per-

form significantly worse than our method.

B. Simulation Experiment Details

Below we describe additional details of our simulation

experiments.

Fig. 10: Real-world DoubleBin Setup. The visualization of the real-
world DoubleBin environment and the positions of the cameras.

1) Simulation Tasks:

(a) Lift Cube (ManiSkill): We use the Lift Cube task

from ManiSkil2 [14]. The goal of this task is to lift

the cube to a goal height of 0.2m. The initial cube

position is uniformly sampled from [−1, 1]2 with a

rotation uniformly sampled from [0, 2π]. The reward

function is composed of a reaching reward, grasping

reward and lifting reward (see the Maniskill2 doc-

umentation for details). We substract ManiSkill2’s

original reward function by its max value such that

the returned reward is always negative, thus encour-

aging the agent to achieve the success condition as

soon as possible thereby ending the episode.

(b) Stack Cube (ManiSkill): We use the Stack Cube

task from ManiSkil2 [14]. The goal of the task is to

pick up a red cube and place it onto a green one.

When the red cube is placed on the green cube and

not grasped by the robot, the episode is a success (see

the ManiSkill2 documentation for details). Similarly,

we substract ManiSkill2’s original reward function by

its max value such that the returned reward is always

negative.

(c) Peg Insertion (ManiSkill): This task is a modified

version of the Peg Insertion Task in ManiSkill2.

The goal is to insert a peg into the horizontal hole

in a box. We slightly simplify the original task by

removing any randomization of the hole’s location

and peg’s initial pose. We also marginally enlarge

the hole by adding 1cm clearance. Similarly, we

substract ManiSkill2’s original reward function by its

max value such that the returned reward is always

negative.

(d) Door Opening (Robosuite): The task is borrowed

from Robosuite Door Opening task. We are using the

0 25 50 75 100 125 150 175 200

Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

ManiSkill2
 Lift Cube

0 25 50 75 100 125 150 175 200

Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

ManiSkill2
 Stack Cube

0 200 400 600 800 1000

Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

ManiSkill2
 Peg Insertion

0 200 400 600 800 1000 1200 1400

Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Double Bin

0 100 200 300 400 500

Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Robosuite
 Door Opening

0 100 200 300 400 500

Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Robosuite
 Pick-and-Place

Ours P-DQN RAPS

Fig. 11: The success rate of six different tasks over environment steps. Each method is averaged over three different seeds and the standard
deviation is represented in the shaded area. Our method (blue) consistently outperforms both of the baselines in almost all tasks.

Fig. 12: 32 Train objects used in the training

(a) 5 Unseen Category objects (b) 7 Unseen Instances
(Common Category) objects

Fig. 13: 12 Unseen objects used in the evaluation

original dense stage reward from Robosuite. Since

there is no specific goal pose for this task, the goal

pose is the same as the object pose.

(e) Pick-and-Place (Robosuite): The task is borrowed

from Robosuite Pick-and-Place task. We are using

the original dense stage reward from Robosuite. The

object is randomly chosen at the beginning of each

episode. The original task does not specify a desired

goal pose so we choose the center of the container as

the desired position and the same orientation of the

object as the initial state.

(f) DoubleBin Task: We build the customized Dou-

bleBin task environment in Robosuite [36]. The en-

vironment has two bins on a table and three cameras,

looking over the bins from the left, the right and

the front, as shown in the Figure 9. The size of

the bin is 40cm × 24cm × 6cm and the distance

between the centers of the bins is 13.5cm. For each

camera, we record the depth image and project all the

points back to the tabletop frame, which has an origin

at the middle between the two bins. In Robosuite,

we have access to ground-truth segmentation labels

Fig. 14: Results breakdown for different object categories with the
different maximum episode lengths annotated in the legend as (10)
or (30). The Unseen Object Instance (Common Category) (orange)
has comparable performance with the same object category in the
Train (blue). The overall success rate of 30 maximum episode steps
is higher than the one with 10 maximum episode steps.

of the object and we use these labels to compute

a segmentation mask for all the points. We then

combine the points from all of the cameras to obtain

the point cloud observation. Each episode, an object

is randomly chosen from our dataset and loaded into

the environment. The object is dropped from the air

above one of the bins, after which it reaches a stable

initial pose. The reward function for training our RL

policy is rt = − 1

N

∑N

i=1
||xg

i − xi|| where || · || is

the L2 norm, N is the total number of points on the

object point cloud, xi is a point in the point cloud

of the current object pose, and xg
i is a corresponding

point in the point cloud of the goal pose.

The goal poses in the DoubleBin Task are sampled

by dropping the objects from a certain height and

waiting until they stabilize.

The task is considered a success only when rt >
−0.03, which is equivalent to 1

N

∑N

i=1
||xg

i − xi|| <
0.03m.

2) Training and Evaluation Details:

In this section, we include the training curves of our

methods and baselines over six different task variants. Fig-

ure 11 shows the success rate of the task with regard to

the environment interaction steps. Here every environment

interaction step refers to one primitive step in the environment

which may involve several low-level atomic steps to complete.

For every method, we run the experiment across three training

seeds. The variance of the seeds is plotted in the figure with

the shading area.

We first fill the replay buffer with trajectories by performing

1e4 random actions. Then we start training our policy. During

training, we evaluate the current policy every 5e3 environment

interaction steps over 20 episodes and report the average

success rate across those episodes.

3) Object Dataset Processing and Visualization:

The object dataset we are using is from Liu et al. [11].

We use convex decomposition for the objects and generate

watertight mesh following Zhou et al. [35]. We also scale the

objects so that the maximum object dimension is 10cm. During

training, we randomly sample an object and apply additional

proportional scaling to all the dimensions within a range of

[0.8, 1.2] to simulate objects of different sizes. We also follow

the procedure from Zhou et al. [35] to filter out the objects

that have some simulation artifacts or flat and thin objects

that are too difficult to poke. After the filtering, we have 44

objects remaining, including cube, bottle, cup, mug, etc. Those

objects are divided into three subsets including 32 objects in

Train, 7 objects in Unseen Instance (Common Categories)

and 5 objects in Unseen Category. Figure 12 shows the Train

objects and Figure 13 shows the unseen objects we test during

evaluation.

4) Primitive State Estimation:

In simulation, we need to determine whether an object is

grasped because certain primitives can only be used when

an object is grasped (Move to and Move delta). In order to

accurately estimate the grasped state, we have two conditions.

First, we use the Mujoco contact detection to detect if any

inner side of the fingertip is in contact with the object. If both

inner sides of the fingertip are in contact, we return true for the

grasped state. However, only checking the contact brings some

false negative cases because the simulation sometimes cannot

detect the contact for some grasping poses due to simulation

artifacts. For example, when the gripper grasps the object in

corner and it is able to lift the object, the simulation only

detects one inner side of the fingertip is in contact of the

object. Therefore, to reduce the false negatives, we add the

second condition, that is to check if the object is above the

table. To be more specific, we check if the object z position is

above the table by at least two times of the object’s maximum

dimension. The final grasped state is evaluated to be true

if either of these two conditions is satisfied. Otherwise, the

grasped state is false.

5) Simulation: Additional Evaluation:

In order to have a comprehensive analysis of our method’s

performance across different geometries and shapes. In this

section, we report the breakdown results, i.e., average success

rate for each object category. Figure 14 shows that our method

performs consistently well across a large category of objects.

However, there are some categories with which our method

struggles because of the irregular geometries.

6) Simulation: Dexterous Hand Task:

To demonstrate that our set of primitives applies to different

morphologies of end-effectors, we demonstrate the experimen-

tal results on tasks with dexterous hands in simulation apart

from the main results we have for grippers.

In the dexterous hand task, we use the Relocate task from

Adroit simulation benchmark [18]. The goal is to grasp the red

sphere with the ShadowHand and move it to the goal position.

The accepted range of the goal is denoted as a large green

sphere. We adapt the implementations of the five primitives to

be compatible with the robot morphology. When controlling

the position of the hand as in Poke, Grasp, and Move to, we

align the palm center of the hand to the target position. Grasp

and Open Gripper crunches (all finger joints set to 1) and

stretches (all finger joints set to 0) all the fingers respectively.

For simplicity, we also remove all the parameters controlling

the z-axis rotation. In other words, the hand does not change

its orientation during any primitive execution.

Figure 16 includes an example rollout of our agent. Our

method achieves 100% success rate on this dexterous hand task

within 20k training steps, proving our method’s generality.

7) Simulation: Additional Baseline:

Prior work [35] proposes a hybrid discrete-continuous

action space for using a single spatially-grounded poking

primitive to align the object 6d pose in a single bin. There

are multiple ways to extend this single primitive framework to

incorporate more primitives to solve a diverse range of general

manipulation tasks. In order to demonstrate that designing a

framework for multi-primitive setting is non-trivial, we add

an additional baseline in this section to show that a naive

extension of [35] can work on easier tasks like ManiSkill Lift

Cube task but fail to match our method’s performance in more

challenging tasks like Double Bin task.

We introduce a new baseline, named as HACMan (logit),

which extends the continuous action of [35] to also include

Same Goal

Grasp

Same Primitive

Primitive 1: Grasp Primitive 2: Poke

Goal Goal

Pose 1 Pose 2

Fig. 15: Primitive Heatmap. The first row shows two critic heatmap for two different primitives at the same time step in an rollout. The
agent learns to apply different primitives at different regions of the mug, based on its geometric features: Grasp needs to be applied to the
center of the mug; Poke needs to be applied to the side of the mug to flip it into a more easily graspable pose. The second row shows two
critic heatmaps for the same object and the same primitive at two different poses. The agent learns to adapt its grasp location when there is
a pose difference of the mug.

logits. Specifically, the discrete action aloc is to choose a point

out of N points in the point cloud and the agent uses that

as a location to apply the primitive motion. The continuous

action (amall, a
logit) includes the continuous motion parameters

amall = (amgrasp, a
m
poke, a

m
move to, a

m
move delta, a

m
open gripper)

of all the five primitives and additional 5d logits alogit ∈
R

5. In execution, the location aloc is chosen based on the

Q value of the network. It first chooses the point index

argmaxi Qi(s, a
m
i), 1 ≤ i ≤ N and maps the index to

a 3d point location. Then we get the corresponding logits

alogiti . The primitive aprim is selected by sampling through the

softmax over these logits. The final primitive motion parameter

is selected by indexing the motion parameters amall[a
prim].

We conduct the experiments in two different tasks and the

results are shown in Figure 17. Compared to our method,

which predicts a separate Q value for point and primitive,

HACMan (logit) predicts only separate Q value for the point.

This structure makes it difficult to learn spatial reasoning

with different primitives, leading to its failure on challenging

Double Bin tasks.

C. Primitive Heatmap Visualization

In Figure 15, we visualize the spatial Critic maps for

different primitives, which vary based on the primitive type

and in different regions of an object, based on the geometry

of the object. This visualization showcases the agent’s capacity

for multi-modal reasoning and geometric adaptability in task

execution.

 Grasp Move to Move delta

 Grasp Move to Open Gripper

 Grasp Move delta

 Grasp Poke Move delta

 Grasp Move to

 Grasp Move to Move delta

Fig. 16: Demonstration of our method’s rollouts on Robosuite and Adroit tasks. The first two rows demonstrate our
method performing the Pick-and-Place (RoboSuite) task with different objects. The third row shows our method performing
the Door Opening (RoboSuite) task. The forth shows our method performing the Relocate (Adroit) task. The fifth row shows
our method performing the Stack Cube (Maniskill2) task. And the last row shows the Peg Insertion (Maniskill2) task.

0 25 50 75 100 125 150 175 200

Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e
ManiSkill2
 Lift Cube

0 100 200 300 400 500 600

Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Double Bin

Ours HACMan (logit)

Fig. 17: The success rate of two different tasks over environment steps. Each method is averaged over three different random seeds and the
standard deviation is represented in the shaded area. The baseline HacMan(logit) (orange) achieves comparable performance on easy task
ManiSkill Lift Cube but fails to match the performance of our method (blue) in more challenging Double Bin task.

D. Real-world Experiments

1) Real World Setup:

Figure 10 demonstrates the setup for our real-world Dou-

bleBin experiment. We employ 4 Azure Kinect cameras to

capture multi-view point clouds, minimizing the observation

occlusion. We use two plastic bins with dimensions similar to

the simulation ones, albeit with slight shape differences.

We use a Franka Emika robot equipped with a Franka hand

for our experiments. We replace the original Franka hand

fingertips with the Festo DHAS-GF-60-U-BU fingertip for

improved compliance during contact.

2) Observation and Goal Processing:

Our input point cloud to the policy contains “flow”, e.g.

vectors of correspondences between the observation point

cloud and each point’s corresponding point in the goal point

cloud. The computation of flow requires us knowing the

transformation between the current observation and the goal.

In order to estimate this transformation in the real-world, we

use point cloud registration. Specifically, this process involves:

(a) Global registration using RANSAC with FPFH fea-

tures.

(b) Local refinement via Point-to-Plane ICP. We only

match the object shape, which empirically produces

more robust performance than matching both the

shape and the color.

We predetermine 4 goal poses for each object by placing

them at 2 random positions inside each of the two bins. The

robot operates autonomously across episodes without manual

intervention. When calculating the success rates, we mark

episodes with “fake” successes (the episode fails but the agent

believes it as a success due to point cloud registration failure)

as failures.

3) Primitive State Estimation:

In real-world experiments, we also estimate the primitive

state grasped. The state is set to true when the camera

detects the object’s lowest point is at least 4cm above the bin.

Conversely, the state switches to false as soon as the gripper

releases.

E. Extended Discussion with Related Work

1) Compared to [35]: This previous work only

demonstrated a spatially-grounded action space with one type

of primitive and one task; we are the first to demonstrate that

spatially-grounded manipulation can be extended to a wide

range of tasks.

To achieve this generality, we design 2 additional spatially-

grounded primitives (grasp and move-to) and 2 non-spatially-

grounded primitives (open gripper and move-delta) to enable

a range of tasks to be achieved. We have presented a set of

spatially-grounded primitives that we show to be sufficiently

general to be applied to a wide range of tasks and can be

adopted by others in the community.

How to spatially-ground each of these primitives is non-

obvious and we experimented with different choices of spatial

grounding before we found this set of spatially-grounded

primitives that work well and cover a range of tasks.

Further, there are multiple ways in which one can imagine

extending [35] to try to incorporate multiple primitives. In our

current approach, we predict a separate Q-value for each point

and each primitive, and we choose the point and primitive

combination with the highest Q-value. We have added an

experiment to compare this approach to an alternative: Similar

to RAPS [3], we extend the actor’s action space to include the

log probability (logit) of selecting each primitive; we can treat

the logits as a continuous action output which we update using

reinforcement learning (e.g. TD3) and then select the action

based on a softmax over these logits. This second approach

is similar to the approach used in RAPS and this baseline

can be viewed as a spatially-grounded variant of RAPS. We

conduct experiments to test this approach, as shown in the Ap-

pendix B7. The results show that while the alternative method

solves the easier tasks, our method achieves significantly better

performance on the more challenging double-bin task.

2) Compared to [4]: Our method has additional primitives

that enable our method to achieve a wide range of tasks,

compared to the single task shown in [4]. As mentioned above,

designing a set of spatially-grounded primitives that could

achieve a wide range of tasks was not straight-forward in our

experience.

For example, the method in [4] only includes 2 primitives,

referred to as “shift” and “grasp” (which are similar to our

“poke” and grasp” primitives). These primitives would not

be capable of achieving our double-bin task which requires

placing an object into a specific 6D pose. For this task, we

needed the additional primitives that we included: “move to”,

“move delta”, and “open gripper”. Other differences compared

to [4] include:

1) 2D vs. 3D. The previous work [4] provides a solution

based on the assumption that their spatial grounding

can be represented in a top-down 2D pixel space, while

we provide a generic solution for manipulation in full-

3D-space. The 2D representation limits both the set of

available locations and the action flexibility: the set of

points that can be selected in [4] are limited to only those

visible from a top-down camera, whereas our method can

select any visible point on the object surface (such as

on the sides of an object); furthermore, the 2D pushing

actions used in the previous work are insufficient for more

dexterous non-prehensile manipulation motions such as

flipping an object, which require 3D pushing actions as

we use in our method.

2) Limited horizon. The previous work [4] assumes their

task can be completed within 2 primitive steps. It requires

a separate value function for each step, which is not

scalable for longer horizon-tasks like our Double-Bin

task. Additionally, the limited two-step horizon restricts

the exploration of multiple solution modalities, as it yields

only one possible solution.

3) Limited experiments.

• Tasks diversity. The prior work [4] focuses on how

to pick up objects, with two specialized primitives

designed for this task (grasping and 2D shifting). We

focus on how an agent can discover longer-horizon

strategies using a diverse set of primitives on more

general manipulation tasks.

• Object generalization: [4] shows their method working

on limited objects geometry (cubes, spheres, and cylin-

ders). Prior work [35] has shown that the difficulty is

much lower when there is limited geometric diversity.

In contrast, our method maintains good performance

across diverse and even diverse unseen geometries.

• The prior work [4] does not show any real-world

experiments and does not explore how the method can

be transferred to real-world.

	Introduction
	Related Work
	Background
	Method
	Action Representation
	Parameterized Motion Primitives
	Hybrid RL Algorithm

	Experimental Setup
	ManiSkill Tasks
	Robosuite Task
	DoubleBin Task

	Simulation Results
	Real-World Experiments
	Conclusion
	Appendix
	Algorithm and Implementation Details
	Observations
	Primitive Implementation Details
	Baseline Implementation
	Hyper-parameters
	Regressed Location Mapping

	Simulation Experiment Details
	Simulation Tasks
	Training and Evaluation Details
	Object Dataset Processing and Visualization
	Primitive State Estimation
	Simulation: Additional Evaluation
	Simulation: Dexterous Hand Task
	Simulation: Additional Baseline

	Primitive Heatmap Visualization
	Real-world Experiments
	Real World Setup
	Observation and Goal Processing
	Primitive State Estimation

	Extended Discussion with Related Work
	Compared to zhou2023hacman
	Compared to feldman2022hybrid

